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Abstract—Time delays in exchange of information and packet dropoutsare very common in NCS (Feedback control systems with 

communications networks for data exchange). Owing to the occurrence of such time delays and packet dropouts, the NCS systems are 

uncertain and time-varying. Also these time dealys and packet dropouts may result in degartion of the NCS performance and 

instability.This paper presents a new design of a state-feedback controller usingLyapunov stability criterion in terms of LMI conditions for 

the time varying uncertain NCS. Further, the LMI condition is used to guarantee the stability of the NCS. Results are included to 

demonstrate this presented approach to stabilization of NCS.  

Index Terms—Communication delay, Lyapunov stability, NCS, nominal value, packet dropouts, state feedback controller,uncertainty and 

Zero Order Hold (ZOH).  

———————————————————— 

1 INTRODUCTION

HE point-to-point architecture is the traditional communi-

cation architecture for control systems [1], i.e. sensors and 

actuators are connected to controllers via wires. Due to ad-

vances in network communications the traditional point-to-

point architecture is no longer used. Instead, to meet new re-

quirements, such as modularity, integrated diagnostics, quick 

and easy maintenance the recent industrial control schemes 

explit the communication networks in the feedback control 

systems.Further, the common-bus network architectures can 

improve the efficiency, flexibility and reliability of integrated 

applications, and reduce installation, reconfiguration, main-

tenance time and costs [3,7]. In recent years, therefore, it gives 

rise to the so-called Network-Based Control Systems (NCSs) 

[2, 3] as shown in Fig.1.The challenge lies in designing NCSs 

are in incorporating the issues like variable time-delays and 

packet dropouts introduced by use of real-time communica-

tion network in the system model and thereby designing the 

controller. Moreover, for controlling a continuous-time plant 

over a digital communication network (shown in Fig. 1.) offers 

more complexity in analysis and design. The plant is a conti-

nuous one whereas the feedback control is through digital 

network. The overall system is remodelled in discrete-domain. 

The ZOH reconstructs analog singal from the discrete signals. 

Networks introduced in feedback control loop raises two fun-

damental issues known as data packet dropouts and delay in 

receiving of measurement data and control data across the 

communication channel [8]. These issues may be approached 

individually or in a combination. The objective of the work 

described in this paper is to deal with the packet dropouts and 

the uncertainties arising out in the NCS due to insertion of 

network.Packet dropouts in NCS are always a focused prob-

lem for researchers. Due to time delay and packet dropouts, 

there may be unavailability of measurement data at controller 

end or control data at actuator end. Thus, the uncertainty in 

the system results in instability [3]. 

Dropouts in a system can happen in any state, may be dro-

pouts in past state or in future state of the system. This paper 

describes the combined effect of the dropouts, i.e.considering 

the system with all possible types of dropouts as a whole and 

stabilizing the system. This gives a robustness to the system 

that can tolerate any possible dropouts occurring randomly. 

Section 2presents the modeling of NCS with uncertainty and 

derives a sufficient stabilization condition using Lyapunov 

stability criterion. Section 3 presents results and discussions. 

Finally, section 4 concludes the paper. 

2 SYSTEM MODEL 

As in a NCS the data is being sent and received in digital 

form, it is necessary to go for discrete domain for easy analy-

sis. The plant dynamics in continuous form is given by 

T 
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Fig.1 Structure of a Networked Control System 
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where ( ) nx t R is the state vector and ( ) mu t R the plant input; 

A, B are known matrices and K is feedback gain to be de-

signed. Continuous to discrete conversion methods [5] in-

cludes finding the state transition matrix (solution of ATe ), 

where A = system matrix, T = sampling interval. Computation 

of F = ATe  can be evaluated using the formula 

2 2 3 3

1
1! 2! 2!

AT AT A T A T
e  (2) 

and computation of G  will be as,  

1

0

. ( )

T

As ATe BdsG e I A B  (3) 

A discrete system with state feedback control can be described 

as follows. 

1

and 

x k Fx k Gu k

u t Kx k
 (4) 

where ( ) nx k R , are the state and input  vectorin 

discrete domain; F, G are known matrices.When a system is 

used as a part of NCS there may uncertainty lies due to packet 

loss across the network. Due to this, the system matrix F and 

G  mixed with uncertainties denoted as F  and G

.Augumenting the uncertainty terms in state vector(4) can be 

written as 

1 ( )x k F F x k G G u k  (5) 

Let F denotes the uncertainties associated with F . For each 

sampling interval (T) there is a F matrix assosiciated with a 

system. For one sample intervalT there exits a system matrix 

F1, similarly for n number of sample intervals we have 

Fn.Transmission interval is defined as the total time required 

from generation of a packet at sensor side to receive that pack-

et at plant side to generate a new signal via controller and ac-

tuator. The relation between sampling instance, transmission 

interval, and packet is shown in Fig.2. 

Fig.2 illustrates the transmission interval with respect to 

packet loss. The dark bar at sensor end shows the data packet 

generation, the dark bar at controller and actuator shows the 

reception of data packets. The dashed bars show the packet is 

being lost in transmission. The white bars shows packets are 

not received. No of sampling instances required for a complete 

transmission interval denotes the no of packet losses. e.g. in 

Fig.2, at ,  and K n T KT K n T  there is no packet loss, as 

the packet generated at sensor is received at actuator via con-

troller to generate another measurement data. The transmis-

sion interval is from  to  K n T KT and from  to KT K n T . 

These two transmission intervals also show the amount of 

packet loss as shown in Fig.2. The next objective is to find the 

amount of uncertainty added in system matrices due to the 

packet losses in the respective transmission intervals. 

Computation of F and ∆F 

For each sampling interval,T ,thereis an associated system 

matrix ( )F . According to (2)it can be written as- 

2 2( ) {( ) } ( )
1

1! 2! !

N N
nAT

n

A nT A n T A nT
F e

N
 (6) 

N = maximum number of iteration at which the series tends to 

zero. 

Nominal F value: 

Let the amount of packet loss considered at sampling in-

stance is , then mF is known as the nominal F  value. 

Other values of F above and below of m  are known as uncer-

tainty values. For § 0,1 , 1 we can have the generalized 

formula. 

2 2
(m §)AT

m §

{ §) }{( §) } {( §) }
F e 1 ...

1! 2! !

N NA m TA m T A m T

N
(7) 

The summation of (7) for different values of § will give the F

matrix with uncertainties, which can be expressed as 

2 2{( §) } {( §) } {( §) }
1

1! 2! !

N NA m T A m T A m T

N
F F  (8) 

From Eq.(8) it is seen that when §  equals to zero it is the no-

minal and for other values it is uncertainty. 1mF is the maxi-

mum, 1mF is the minimum and mF  is the nominal value of F . 

So (8) can be written as 

2 2

2 2 2

( ) {( ) }
1 ...

1! 2!

{(§) } {(2 §) §
                    ...

1! 2!

A mT m T

A T A m T T

A
F F

 (9) 

( ) mu k R
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Fig.2. Illustration of packet loss, transmission interval in 

NCS 
 



International Journal of Scientific & Engineering Research,Volume 3, Issue 6, June-2012                                                                                         3 

ISSN 2229-5518 
  

IJSER © 2012 

http://www.ijser.org  

where
1 2

2 2(§) § ,(2 §) § §
f f

T m T T , are uncertainties and 

1 2§ ,§f f are the maximum values of uncertainty that is asso-

ciated with the system. The generalized value of §Q  can be 

written as- 

Q§ {( §) } ( )Q
Qf m T mT  (10) 

where 1,2,3Q N and the maximum values of §Q  de-

noted §Q . From (8),one can find the value of F  as- 

MAXIMUM NOMINALF F F  

Structural exploration of ∆F 

The uncertainty matrix F  can be written as- 

f f fF D f E  

1

1 2

1

3

2 3

§ I
0

§

§  §  §
2! 3!

§ I
0

§

f

f f f

N

f

f

Nf

A A
A I



  



 (11) 

For a  matrix the size of  is , is a diagonal 

matrix of  and  is an identity matrix of , and  

is the maximum value of uncertainty that is associated with 

the system and  is an identity matrix.  

Computation of G and ∆G 

From (3),one can write 1( )ATG e I A B  so as the case of F

we can write- 

22
1(1 ... )

1! 2!
n

A nT nT
G A B

A
I  (12) 

Nominal G value 

Let the amount of packet loss considered at the sampling 

instance is 1m then mG  is known as the nominal G  value. 

Other values of G  above and below of m is known as uncer-

tainty values. 

( §)
§

2 2
1

§
e 1

1!

§){( §) }
... I A B

2! !

m AT
m

NN

A m T

A m TA m T

N

G

 (13) 

The summation of (13)for all values of § will give G  and G  

is calculated as follows- 

MAXIMUM NOMINALG G G  

The uncertainties §Qg  and maximum uncertainties §Qg asso-

ciated with G  matrix can be found in the similar way asin(10). 

Structural exploration of ∆G 

The uncertainty matrix G  can be written as- 

g g gG D f E  

1

1g

1 2 3

Ng

Ng

2 3

§ I
0

§

§  §  §
2! 3!

§ I
0

§

g

g g g

A A
A I



  



 (14) 

For a r r matrix A  and r d  matrix B  the size of gD is r N ,

ff  is a diagonal matrix of N N and fE  is an identity matrix 

of N d ,. Where 
1

§
g

 and 
Ng

§  are the uncertainty and maxi-

mum value of uncertainty respectively that is associated with 

the system. I is the identity matrix. 

Considering a Lyapunovcandidate function as  

( ) T
k kV k x Px  (15) 

where P is positive definite matrix, in accordance to Lyapu-

nov stability criteria [4, 6] the above equation (15) tends to 

asymptotic stable if it satisfy-

0
T TTV F F K G G P F F G G K P

(16)
 

the(16)can be written as- 

0

T TTP F F K G G P

P F F G G K P

 

1 1 0

0

T TT
f f f g g g

T T
f f f g g g

E E KE E KP F GK P

P F GK P PD D P PD D P
(17) 

Multiply both sides by diagonal matrix ( 1P ) in both sides of 

above equation (18),one obtaines 

1 1 1 1 1 1 1 1

1 1

( )

( )

T T T T
f f f g g g

T T
f f f g g g

P P E E P P K E E KP P F GK

F GK P P D D D D
(18) 

Assuming 1  and T TP X K Y and using Schur compilation, 

the LMI is obtained as  

* 0 0 0

0* *

* * *

T T T T T T
f g

T T
f f f g g g

f

g

X XF Y G XE Y E

X D D D D

I

I

 (19) 

where * is transpose of a corresponding value.  

3 RESULTSAND DISCUSSION 

The transfer function ( )G s of the DC servo motor  is 

3 2

53.2718

9.481 36.18 0.8211s s s
 and in the state space parameters 

(A, B, C, D) can be obtained using MATLAB, where A=[-

r r A fD r N ff

N N fE N r §

I

thm
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9.4810,-36.1800,-0.8211;1,0,0;0,1,0], B=[1;0;0],C=[0,0,53.2718] 

and D=0; 

Considering the maximum packet loss to be 7 and finding the 

system matrices F and G as per (6)and(12) for each instance of 

packet loss, with § 0,1, 1 , we obtain  n, a  , df g f gD D E E using 

(11)and (14). fD is matrix of 3 90  and fE is identity matrix of 

90 3  and gD is matrix of 3 30 and gE is identity matrix of 

30 3 . After finding the all above values of we have to solve 

for LMI of (19)for unknowns like , , fX Y  and g . After solving 

and as previously assumed that, the system has maximum 

packet loss 7, the maximum uncertainty values associated 

with F and G matrix are found to be as 

,23.3080 23.3144f g respectively.  

Fig.3 shows the gradual increase of system uncertainties with 

packet loss. Fig.4 shows that the system statesapproach to the 

equliburium point irrespective to packet loss. 
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Fig. 3. Efffect of Packet droputs on Uncertainty  
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4 CONCLUSIONS 

Uncertainty in a NCS due to packet loss is explained in this 

paper considering different transmission intervals. The 

uncertainty analysis of the studied NCS is carried out to deal 

with its stabilization. A sufficient condition for stabilization is 

derived using LMI. A state feedback controller is also 

implemented to ensure the stabilization of the NCS.  
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